Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(2): e0247723, 2021.
Article in English | MEDLINE | ID: mdl-33630955

ABSTRACT

The exploitation of petroleum oil generates a considerable amount of "produced water or petroleum waste effluent (PWE)" that is contaminated with polycyclic aromatic hydrocarbons (PAHs), including Benzo[a]pyrene (BaP). PWE is characterised by its high salinity, which can be as high as 30% NaCl, thus the exploitation of biodegradation to remove PAHs necessitates the use of active halophilic microbes. The strain 10SBZ1A was isolated from oil contaminated soils, by enrichment experiment in medium containing 10% NaCl (w/v). Homology analyses of 16S rRNA sequences identified 10SBZ1A as a Staphylococcus haemoliticus species, based on 99.99% homology (NCBI, accession number GI: MN388897). The strain could grow in the presence of 4-200 µmol l-1 of BaP as the sole source of carbon, with a doubling time of 17-42 h. This strain optimum conditions for growth were 37 oC, 10% NaCl (w/v) and pH 7, and under these conditions, it degraded BaP at a rate of 0.8 µmol l-1 per day. The strain 10SBZ1A actively degraded PAHs of lower molecular weights than that of BaP, including pyrene, phenanthrene, anthracene. This strain was also capable of removing 80% of BaP in the context of soil spiked with BaP (10 µmol l-1 in 100 g of soil) within 30 days. Finally, a metabolic pathway of BaP was proposed, based on the identified metabolites using liquid chromatography-high resolution tandem mass spectrometry. To the best of our knowledge, this is the first report of a halophilic BaP degrading bacterial strain at salinity > 5% NaCl.


Subject(s)
Benzo(a)pyrene/metabolism , Biodegradation, Environmental , Soil Pollutants/metabolism , Staphylococcus haemolyticus/metabolism , Water Pollutants, Chemical/metabolism , Soil Microbiology
2.
PLoS One ; 14(11): e0224989, 2019.
Article in English | MEDLINE | ID: mdl-31703100

ABSTRACT

In the anaerobic process, fat-oil-grease (FOG) is hydrolysed to long-chain fatty acids (LCFAs) and glycerol (GLYC), which are then used as substrates to produce biogas. The increase in FOG and LCFAs inhibits methanogenesis, and so far, most work investigating this inhibition has been carried out when FOG or LCFAs were used as co-substrates. In the current work, the inhibition of methanogenesis by FOG, LCFAs and GLYC was investigated when used as sole substrates. To gain more insight on the dynamics of this process, the change of microbial community was analysed using 16S rRNA gene amplicon sequencing. The results indicate that, as the concentrations of cooking olive oil (CO, which represents FOG) and LCFAs increase, methanogenesis is inhibited. For instance, at 0.01 g. L-1 of FOG, the rate of biogas formation was around 8 ml.L-1.day-1, and this decreased to <4 ml.L-1.day-1 at 40 g.L-1. Similar results were observed with the use of LCFAs. However, GLYC concentrations up to 100g.L-1 did not affect the rate of biogas formation. Acidic pH, temperature > = 45°C and NaCl > 3% led to a significant decrease in the rate of biogas formation. Microbial community analyses were carried out from samples from 3 different bioreactors (CO, OLEI and GLYC), on day 1, 5 and 15. In each bioreactor, microbial communities were dominated by Proteobacteria, Firmicutes and Bacteroidetes phyla. The most important families were Enterobacteriaceae, Pseudomonadaceae and Shewanellaceae (Proteobacteria phylum), Clostridiacea and Ruminococcaceae (Firmicutes) and Porphyromonadaceae and Bacteroidaceae (Bacteroidetes). In CO bioreactor, Proteobacteria bacteria decreased over time, while those of OLEI and GLYC bioreactors increased. A more pronounced increase in Bacteroidetes and Firmicutes were observed in CO bioreactor. The methanogenic archaea Methanobacteriaceae and Methanocorpusculaceae were identified. This analysis has shown that a set of microbial population is selected as a function of the substrate.


Subject(s)
Biofuels , Biotransformation , Lipid Metabolism , Microbiota , Bioreactors , Carbon Monoxide/metabolism , Kinetics , Olive Oil/metabolism , Oxygen Consumption
3.
Environ Technol ; 38(6): 661-670, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27426954

ABSTRACT

A bacterial consortium that degrades cooking oil (CO) has been isolated in wastewater (WW) samples, by enrichment in olive CO. This consortium could degrade 90% of CO within 7-9 days (from an initial 1% [w/v]), and it is more active at alkaline conditions. The 16S ribonucleic acid (RNA) gene analysis showed that it contains five bacterium species: Stenotrophomonas rhizophila, Sphingobacterium sp., Pseudomonas libanensis, Pseudomonas poae and Pseudomonas aeruginosa. This consortium can degrade the free fatty acids (FFA): palmitic, stearic, oleic, linoleic and linolenic acids; glycerol, glucose and amylose; and albumin, but could not efficiently degrade carboxymethyl-cellulose. Each strain could also degrade CO and FFAs. The level of bacterial crude-activity of extracellular lipases was found to be between 0.2 and 4U/ml. Using synthetic WW, the consortium could reduce 80% of the chemical oxygen demand [from 10550 ± 2828 mg/l], 80% of nitrogen (from 410 ± 78 mgl/l) and 57% of phosphorus (from 93 ± 25 mg/l). Thus, this consortium can be utilized in the removal of CO from WW.


Subject(s)
Bacteria/metabolism , Hydrocarbons/metabolism , Microbial Consortia , Petroleum/metabolism , Wastewater/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biodegradation, Environmental , Petroleum/microbiology , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...